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Low-Frequency Behavior of the Propagation
Constant Along a Thin Wire in an

Arbitrarily Shaped Mine Tunnel

EDWARD F. KUESTER, MEMBER, IEEE, AND DAVID B. SEIDEL, MEMBER, IEEE

AMract-seidel and Wait have investigated tbe complex propagation

constant (phase and attenuation coefficients) of the fnmfamentat mode of
propagation for radfo waves afong a thin wire or cablej located in an

elftpticaf mfne tunnel, and found that the attenuation rate for low

frequency is insensitive to the shape of the eflipse if tbe cable-wall dfatance

and crom-sewtional area are kept constant. We consider here tmmefs of

more general cross sectio~ and obtain a cbaracterfstfc equation for the

propagation constant valid for sufficiently low frequency, by means of a

variational formulation of an fntegraf equation. Tbe cbaraeteristic equation

fnvolves ordy the electrfcaf parameter of the tunnel wafls, the radius of the

wfre, and the capacitance per unit length that the wire would have ff the

tunnel watfs were perfectfy conducting. Agreement with exact calcidations

for severat gemnetrfes is found to be exceflent below about 100 ~ and

acceptable even up to 1 MHz or more, for typicaf tunnel paranretem. Since

the wire capacitance can be shown to depend most importantly on its

distance from the waft and on tbe area of the tunnel, the conclusion of

Seidel and Waft can be made more prdse and extendd to tmmefs of

arbbry m section.

I. INTRODUCTION

M UCH INTEREST has been shown recently in the

attenuation and propagation constants of waves

propagating along wires, cables, rails, or other such struc-

tures in mine tunnels, because of the extensive use to

which these have been put for communications purposes.

When the adjacent rock which forms the tunnel wall has

finite conductivity, it is necessary to idealize the problem

by assuming some simple cross-sectional shape (usually

circular) for the tunnel in order to formulate the problem

exactly [1 ]–[3]. Recently, Seidel and Wait [4] investigated

the case of an elliptical mine tunnel in order to determine

the effect of a noncircular cross section on the attenuation

constant. It was found that the attenuation rate at low

frequency is insensitive to the eccentricity of the ellipse if

the cable-wall distance and cross-sectional area are kept

constant. It might reasonably be speculated that this result

does not depend on the specific shape of the tunnel
involved, but only on some more general property of the

tunnel.

Manuscript received September 25, 1978; revised January 25, 1979.
This work was supported by the U.S. Bureau of Mines under Contract
with the Institute for Telecommunication Sciences/NTIA, U.S. Depart-
ment of Commerce, Boulder, CO 80303, J. R. Wait, Principal Investiga-
tor, and H. K. Sacks, Project Officer for Bureau of Mines.

E. F. Kuester is with the Electromagnetic Laboratory, Department of
Electrical Engineering, University of Colorado, Boulder, CO 80309.

D. B. Seidel was with the Cooperative Institute for Research in
Environmental Sciences, University of Colorado/NO~ Boulder, CO
80309. He is now with Sandia Laboratories, Alberquerque, NM 87115.

In this work, tunnels of arbitrary shape will be consid-

ered, and a characteristic equation for the propagation

constant and attenuation rate at low frequencies will be

obtained by means of a variational formulation of an

integral equation for the electric field of the transmission-

line mode. This equation involves only the electrical

parameters of the tunnel walls, the radius of the wire, and

the capacitance per unit length the wire would have if the

tunnel walls were perfectly conducting. Comparisons of

numerical results with those of more exact computations

are presented.

II. LOW-FREQUENCY CHARACTERISTIC EQUATION

A method for determining approximately the propaga-

tion constant at low frequency of a mode along a thin

wire located within a mine tunnel of arbitrary cross sec-

tion can be found by starting with Katsenelenbaum’s [5]

integral equation for the fields of a mode on an arbitrarily

shaped dielectric rod. The tunnel geometry is indicated in

Fig. 1. The medium external to the tunnel is assumed to

be homogeneous and have permeability PO,permittivity q

and conductivity u, while the inside of the tunnel is air

filled (~, co). The tunnel wall is denoted by the contour C,

the circumference of the wire by the contour CW, and the

cross section of the tunnel (the region between CW and C)

by S. The interior cross section of the wire is denoted by

SW, and an outward normal unit vector to C or CW will be

denoted by Z (or Z, as appropriate).

By first assuming the wire to have a finite conductivity,

we may express Katsenelenbaum’s integral equation for

this system as

“L/ ( )m* –I @’)Ko[zf/p–p’p’ (1)
—co

where ~ = (xjy) and ~ = (x’,y’) are points in the cross

section, ~ is the vector electric field of the mode,

y:= itipo(u + itic)

N2=(c–iu/u)/Eo

~2(io= [+) – iu(i5)/@]/Eo
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Fig. 1. Mine tumel of arbitrary cross section.

and I’ is

~=(y: -y,

the yet unknown

Re(u) >0

propagation constant, ap-

propriate to an assumed propagation factor of exp (itit –

rz) along the tunnel. The quantity n2(~) is the (complex)

index of refraction at any point in the wire, in the tunnel

or in the tunnel wall, so that the factor (rz2(~)/N2 – 1)

vanishes outside of S + SW, and the integral in (1) is only

over a finite cross section. KO is the usual modified Bessel

function of the second kind, and the operators “grad” and

“div” are understood to have 8/az replaced by – r

according to the implied propagation factor referred to

above. A brief derivation of (1) is given in Appendix B.

A variational expression can be formed from (1) in the

usual way [6] by taking the scalar product of both sides

with (n2(~)/ N* – l)@ ’(@ and integrating over x and y

(once again the integral is actually only over S + SW). The

superscript “ T“ denotes a transpose field which can be

obtained from ~(~) by changing the sign of Ez(~). In what

follows, we will assume for simplicity that the wire is

perfectly conducting, though this is not essential to the

technique. To handle this case, we~et u(@-+co and ~(~)~

O in SW in such a way that u(~)E(~) passes over into a

surface current distribution ~,(~) concentrated on CW. The

resulting variational expression is

(2)

where A =(1 /N2 – 1) and the argument of the Bessel

function has been omitted for brevity.

Since the wire is assumed to be thin, proximity effects

are neglected and ~, consists only of a longitudinal com-

ponent J~z. But conservation of charge and boundary

conditions on ~ imply that

737

iu.fo _ —=
J,.l~.=~n”Ec =~n”~ ~ =–J.ZIC. (3)

w w

and thus (2) reduces to

~Jp)A/ jjT.Eds= ‘2
s

. [grad div - y~]~ ~(~)KOdS’dS
s

(4)

As a trial function suitable for use when the frequency

is sufficiently low, it seems appropriate to use the fields

which would be present if the walls of the tunnel were

perfectly conducting, i.e., the TEM fields ~0, where

Eo= – Vp, qcw=v

@lc=o (5)

and “ t“ denotes the transverse part of an operator, ob-

tained by setting tl/az = O. If & is inserted into (4) as the

trial field, some simplification occurs because ~0 has no

z-component:

(6)

Moreover, by virtue of the special form (5) of ~C,, the

individual terms of (5) can be reworked into more familiar

quantities. These manipulations are carried out in Appen-

dix A.

From (6), (Al), (A8)–(A1 1), we obtain an equation for

determining r in the thin-wire approximation:

+ : u2r2N2Q – : U2R (7)

where y =0.577. . “ is Euler’s constant, C is the capacit-

ance per unit length the wire would exhibit if the tunnel
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walls were perfectly conducting, and

P=~
J

@2dS
CV2 s

Q=+~(i@F’)~ods’ds
s

(8)

(9)

Here V is the (arbitrary) potential difference associated

with the trial field (5), and clearly drops out of (8)–(10).

As u-O, it can be seen that N== 0(1/u), y?= O(U),

A-– 1, and with a certain amount of hindsight, r= O(w)],

so that U2= O(u). Since (8)–(10) are O(a”) as Q-+0, it can

be seen that, for sufficiently low frequencies, (7) will

reduce to

A=zwaw”] (11)

a result which involves the tunnel geometry only through

the capacitance C, which is tabulated for many different

cross-sectional shapes (see e.g., [7]). Since C is generally

only weakly dependent on the dimensions of the tunnel, it

can be seen that the low-frequency behavior of 17will only

weakly depend on these dimensions as well.

As a check on all of this, we can compare with a case

for which a closed-form eigenvalue equation for I’ is

available, namely a wire centered in a circular tunnel of

radius b. Now, the exact equation is mathematically the

same as that for the Goubau line [8], and the low-

frequency limit is found by taking small argument forms

for the Bessel functions involved (see [8]) and results in

(12)

which agrees with (11) since for this case, C/cO =

2n/ln(b/a).

A further comparison can be made with the quasi-static

limit for the offset wire in a circular tunnel obtained by

Wait [3]. Calling the radius of the tunnel b, once again,

and denoting u = ( – O=KoEo– r2) 1/2, Wait’s approximations

up to and including eq. (13) of [3] can be summarized in

our notation as

Ivbl<<l IN21>>1

and hence, u= ye. Since our assumptions correspond to

Iyebl ~ 1, we must take the small argument forms of the
modified Bessel functions in eq. (13) of [3], and insert this

value into eq. (7) of the same reference. The result is

r==zy (13)

where

Z=–*(ln~+y)+Z. (14)

lFor present purposes, O(a) will be understood to include behavior
such as u in w, @n ti)z, etc.

[1ab ‘1
Y= 2mlM0 in —

b2–p:
(15)

where p. is the radial distance of the wire from the center

of the tunnel, and 2. is the axial impedance of the wire.

putting Z.= O in (14), making the previously indicated

approximations in (1 1), and using the capacitance

c [1
b=–p: ‘1

— =2v ln~
60

for the offset wire, we find that (13) and (11) give the

same value for r.

Equation (11) can actually be cast in the suggestive

form of (13) if we put

(16)

Y= itiC (17)

in which case the real and imaginary parts of (16) can be

related to the series resistance and inductance of the line,

once the value of II is known. Equations (16) and (17)

have the interesting interpretation that the low-frequency

behavior of a wire in the tunnel is that of a transmission

line whose shunt admittance is that which the wire would

have if the tunnel walls were perfectly conducting (and

thus is independent of the electric parameters of the rock)

while the series impedance is that of the wire embedded in

the rock with no tunnel surrounding it (and thus is inde-

pendent of the shape of the tunnel) —see, e.g., [10].

III. NUMERICAL RESULTS

In order to compare results from this approximate

analysis to exact results (which are only available for

circular and elliptical cross sections), we need an expres-

sion for the distributed capacitance for these geometries.

For the elliptical geometry shown in Fig. 2 (which in-

cludes the circular geometry as a special case) whose

major and minor semi-axes are given by A - (d/2) cosh I.Ll

and B E (d/2) sinh PI, respectively, and in which the wire

is located at (PO,+.) in elliptic coordinates (x -i-&= (d/2)

cosh ( p + i+)), this capacitance is given by Morse and

Feshbach [9] as

“[cosh= npO COS2n~o sinh= npo sin= n~o
+ 1. (18)

cosh npl sinh npl

It is easily verified that (18) reduces to the expressions

given in the previous section for the circular limit (PI ~co,

d-0, d exp ( p1)+4b).

Results computed from (11) are compared with exact

computations based upon the analysis of Wait and Hill [1]

for a circular tunnel in Fig. 3. Here, the tunnel has radius

b= 2 m and contains a perfectly conducting thin wire with

radius a = 1 cm. The tunnel walls are characterized by



KUESTZ3R AND SEID?3L: LF PROPAGATION ALONG A ‘ZHZN WIll13 ’739

@-

0
A x

(++ +.)

Fig. 2. Elliptical tunnel geometry.
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Fig. 3. Comparison of exact (Wait and Hill) and approximate (from
(11)) solutions for attenuation rate and phase versus frequency, for a
circular tunnel of radius b = 2 m, with wire of radius a= 1 cm, located
at a radius POfrom center of tunnel; .s= 10 .s., v = M, u= 0.01 mhos/m.
po=o: —. po=1m: ––––.

c = 10cO, p = po, and u =0.01 mhos/m. The wire is posi-

tioned at a distance POfrom the center of the tunnel. The

solid lines correspond to a concentrically located wire,

while the dashed lines refer to a wire offset PO= 1 m from

the center of the tunnel. It can be seen that good agree-

ment is obtained for typical tunnel parameters at

frequencies of 100 kHz or below, and that results are

adequate (within a factor of 2 for the attenuation) up to

about 1 MHz. The phase constant is predicted accurately

up to much higher frequencies. Fig. 4 compares results for

the elliptic cross section using the present variational

approach (( 11)—solid lines), and those obtained using the

two-dimensional quasi-static approximation in [4] (broken

lines). Here, (AB )1/2=2 m, B/A= 0.5, and the wire is

located on the major axis 0.4 m from the tunnel wall.

Other parameters are the same as in Fig. 3. The two give

indistinguishable values for attenuation below about 1

MHz, and thus we find similar agreement with exact

results as in the circular case, because the quasi-static

limit was found to give good results in this low-frequency
range.

Fig. 5 demonstrates the improvement in these computa-

tions for a concentric circular tunnel obtained by keeping

one higher degree of approximation in (7); that is, still

neglecting Q, but retaining P and evaluating R approxi-

mately using the small argument form of KO. Relevant

parameters are the same as those for Fig. 3 with PO= O.
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Fig. 4. Attenuation rate and phase versus frequency for an elliptical
tumel with (AB)]12=2 m, B/A= 0.5, with wire of radius a = 1 cm
located on major axis 0.4 m from tunnel wall; c= 10 co, p= W, u = 0.01
mhos/m. Variational solution (from (1 l)): —. Two-dirnensicmaf
quasi-static solution (Seidel and Wait): -–––.

\
\

O.,+-LI
.1 10 bo

FREQUENCY (MHz)

Fig. 5. Attenuation rate and phase versus frequency for a circular
tunnel of radius b = 2 m, with wire of radius a = 1 cm located at center

of tumel (Po = o); c =10 Co, ~ = PO, u =0.01 mhos/m. Zeroth-order

variational (from (1 l)): ———. First-order variational (from (7),
including ~ and R): --------- Exact (Wait and Hill): —.

These calculations are elementary for the concentric circu-

lar case (PO= O) and are omitted here. Here the exact

solution is given by the solid lines, the zeroth-order varia-

tional solution from (11) by the broken lines, and the
higher order solution by the dashed lines. The improve-

ment is quite dramatic, especially in the attenuation, up to

a few megahertz, but deteriorates rapidly thereafter. In
view of the other idealizations involved in this problem

(assumptions of an infinite homogeneous rock wall, no
longitudinal irregularities, etc.) the effort necessary to

compute P, Q, and R in more general situations does :not
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seem justified in terms of the increased accuracy they

provide.

APPENDIX A

In this Appendix, the terms of (6)are manipulated into

convenient forms for use in a low-frequency approxima-

tion.
First, consider the left-hand side:

p“’=@’”’t@”

=~’dw’lqjm~’

=— $V ii. V,@dl= ~ @ (Al)
c. co

where C is the capacitance per unit length of the wire

within a tunnel of identical cross section but with per-

fectly conducting walls. In deriving (Al), use is made of

the divergence theorem and the fact that V&= O in S.

Next, we have

~ ~o(P)o [kwdt divt – Yj] ~~Eo(F’)KodS’dS
s

= ~ ~o(~). [ V: – u2– 172+ curl, curl,] ~ ~o(~)KodS’dS
s s

. – 2m~ ~;d’ – 1’2~ ~o(~). ~ ~o(~’)KodS’dS
s s

J
+ Eo(p). curl, curl @o(;)KodS’dS (A2)

s s

since (V: – U2)K0 = – 2m3(~ – ~’). The first term is (Al);

for the third term we have

J () J()~. F . curl, curl, ~. ~ KodS’dS
s

= -~,@(F;curl, CUrlt~~o(iOKOds’ds

= -~Vt{%Ocurl, curli~~o(iOKods’)ds

= vi ficw @p@)Kod”d~

= Vjjivt Curlt curlt~~o(P’)Kod’’d~=O (A3)
w

The remaining integral in (A2) can be transformed by

(A4)

Consider the first integral:

-L’f”[@(’)po(’’)Kod’’]d’

=@ fiffio(F)KodS’dl
c. s

. VJ ‘,” f ~o(~’)KodS’dS

=J :(F)’;Jfio(F’)Kod”d’ (A5)
SW s

defining O(F) = V in SW, since ~.= O there. Thus (A4)

becomes

~~o(P)~~o(F’)Kods’ds=~ %)v,.~~o(~’)
s s S+sw s

.KodS’dS

and since

v,~Eo(F)KodS=~v; @(F)v;KodS
s

‘~v;[@;’)v;Ko]d’-~ @( F)V;2KodS{
s

= -~s+s @(F’)v;2Kod”
.

=2m@(F)-u2~ @(~)KodS’. (A6)
S+sw

We obtain finally

~~o(iO@o(P’)Kods’ds
s s

=2T
~S+sw

@2ds-~2~ ~(~)~ %OKods’ds
S+sw S+sw

= 2m~ @2dS– u2f O(p)f @(~’) KodS’dS (A7)
s s s

upon neglecting the integrals over the wire cross section

owing to our thin-wire assumption. Thus (A2) becomes

~~o(~)[grad,div,-y ~]~~o@)KodSdS
s s

J
= – 2T5 V2 – 2Tr2 @2dS+ u2r2

.f@;;)J@’(F’)Ko:’d’.
s s

Now, let us consider

{~o(~)grad, $ [fizo(i5))]KodldS
s w

=~~;~)$ [fi’~o(F’)]vtKodl’d’
s w

‘$c [~~;~)]~~o(F)VtKodSdl’
w

= -~ [fi’Eo(F’)~div;~Eo(@KodSdl’ (A9)
w s

(A8)
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which is precisely in the form of the third term on the

right side of (6). By virtue of (A6), we may evaluate this

term as

~ [fi~o(F)]~tJzo(7)Kods’dl
w

=m+c[Lwo]d-u’$[ii=w)]
w w

J-() $;’( 0“(. @ ~’ KodS’dl– U2V fi.~o p KodS ‘
s w .

,0 V2-U2~ [fiEo(F)]~@(F’)Ko~S’dl (A1O)=2T~
w s

the thin-wire assumption having been invoked once more.

The final term of (6) can be evaluated within the

thin-wire constraint by using the fact that the surface

charge (i.e., ii.~O) is nearly uniform over the boundary CW

of the wire, and can be reckoned constant. We then find,

for a wire of radius a, that

+’{%+,) ‘Ail)
where y =0.577. . . is Euler’s constant.

APPENDIX B

In this Appendix, a derivation of (1) is presented essen-

tially as given in [5]. Consider a volume V of electrical

parameters P(7), c(F), and u(Fj embedded in an infinite,

homogeneous region with constant parameters PI, Cl, and

al. Source-free field solutions (e.g., fields of guided

modes) can be considered to arise from the polarization

currents ~, and ~~ radiating in the absence of the body V:

where ;=E – iu/co and 21= Cl – iul/ti. Even though ~ and

~ are as yet unknow~, the fields can be derived from

Hertz vectors fie and 11~ according to

where

741

–i!f,lr-r’[

R,= * Jv.m’) e
47rlr-r’[

&, (114)

We have defined k?= to2p1t1 and Im (kl) <0 for U1>0. If

V, I.L,q and u are translationally invariant in the z-direc-

tion (i.e., V is some cylinder with constant cross-section

~) and mode fields of the form ~= @5)e ‘r’ and XF=

H(~)e ‘r’ are assumed, with ~= (x,-v), then the z’ integra-

tions in (B4) and (B5) can be done in closed form pro-

vided IRe I’1 < lIm kll:

We have put u = (– k? – 1’2)1/2 and Re (u)> O. Here & is

the modified Bessel function of the second kind. Upon

putting p(b) GPl, fi~ vanishes and the integral (1) follows
at once from (B2) by taking the observation point ~ inside

s.
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