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Low-Frequency Behavior of the Propagation
Constant Along a Thin Wire in an
Arbitrarily Shaped Mine Tunnel

EDWARD F. KUESTER, MEMBER, IEEE, AND DAVID B. SEIDEL, MEMBER, IEEE

Abstract—Seidel and Wait have investigated the complex propagation
constant (phase and attenuation coefficients) of the fundamental mode of
propagation for radio waves along a thin wire or cable, located in an
elliptical mine tunnel, and found that the attenuation rate for low
frequency is insensitive to the shape of the ellipse if the cable-wall distance
and cross-sectional area are kept constant. We consider here tunnels of
more general cross section, and obtain a characteristic equation for the
propagation constant, valid for sufficiently low frequency, by means of a
variational formulation of an integral equation. The characteristic equation
involves only the electrical parameters of the tunnel walls, the radius of the
wire, and the capacitance per unit length that the wire would have if the
tunnel walls were perfectly conducting. Agreement with exact calculations
for several geometries is found to be excellent below about 100 kHz, and
acceptable even up to 1 MHZz or more, for typical tunnel parameters. Since
the wire capacitance can be shown to depend most importantly on its
distance from the wall and on the area of the tunnel, the conclusion of
Seidel and Wait can be made more precise and extended to tunnels of
arbitrary cross section.

I. INTRODUCTION

UCH INTEREST has been shown recently in the

attenuation and propagation constants of waves
propagating along wires, cables, rails, or other such struc-
tures in mine tunnels, because of the extensive use to
which these have been put for communications purposes.
When the adjacent rock which forms the tunnel wall has
finite conductivity, it is necessary to idealize the problem
by assuming some simple cross-sectional shape (usually
circular) for the tunnel in order to formulate the problem
exactly [1]-[3]. Recently, Seidel and Wait [4] investigated
the case of an elliptical mine tunnel in order to determine
the effect of a noncircular cross section on the attenuation
constant. It was found that the attenuation rate at low
frequency is insensitive to the eccentricity of the ellipse if
the cable-wall distance and cross-sectional area are kept
constant. It might reasonably be speculated that this result
does not depend on the specific shape of the tunnel
involved, but only on some more general property of the
tunnel.
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In this work, tunnels of arbitrary shape will be consid-
ered, and a characteristic equation for the propagation
constant and attenuation rate at low frequencies will be
obtained by means of a variational formulation of an
integral equation for the electric field of the transmission-
line mode. This equation involves only the electrical
parameters of the tunnel walls, the radius of the wire, and
the capacitance per unit length the wire would have if the
tunnel walls were perfectly conducting. Comparisons of
numerical results with those of more exact computations
are presented.

II. Low-FREQUENCY CHARACTERISTIC EQUATION

A method for determining approximately the propaga-
tion constant at low frequency of a mode along a thin
wire located within a mine tunnel of arbitrary cross sec-
tion can be found by starting with Katsenelenbaum’s [5]
integral equation for the fields of a mode on an arbitrarily
shaped dielectric rod. The tunnel geometry is indicated in
Fig. 1. The medium external to the tunnel is assumed to
be homogeneous and have permeability p,, permittivity e,
and conductivity o, while the inside of the tunnel is air
filled (g, €5). The tunnel wall is denoted by the contour C,
the circumference of the wire by the contour C,, and the
cross section of the tunnel (the region between C,, and C)
by S. The interior cross section of the wire is denoted by
S,,, and an outward normal unit vector to C or C,, will be
denoted by # (or #’, as appropriate).

By first assuming the wire to have a finite conductivity,
we may express Katsenelenbaum’s integral equation for
this system as

- _ 1 .
E(p)= E [grad div— yez]

.fﬁZV%?mqammwmﬁﬂa'ﬂ)

where p=(x,y) and p’=(x’,y’) are points in the cross
section, E is the vector electric field of the mode,

v2=iwpy(o + iwe)
N2=(e—io/w)/¢€,
W)= [ (B)— io(7) /] /<o
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Fig. 1. Mine tunnel of arbitrary cross section.

u=(ye2—-I‘2)1/2, Re(u)>0
and T' is the yet unknown propagation constant, ap-
propriate to an assumed propagation factor of exp (iwt—
I'z) along the tunnel. The quantity n?(p) is the (complex)
index of refraction at any point in the wire, in the tunnel
or in the tunnel wall, so that the factor (n%(p)/N2~1)
vanishes outside of S+ S, and the integral in (1) is only
over a finite cross section. Kj is the usual modified Bessel
function of the second kind, and the operators “grad” and
“div” are understood to have 9/dz replaced by —T
according to the implied propagation factor referred to
above. A brief derivation of (1) is given in Appendix B.
A variational expression can be formed from (1) in the
usual way [6] by taking the scalar product of both sides
with (n*(p)/N2—1)E”(p) and integrating over x and y
(once again the integral is actually only over S+ S,). The
superscript “T” denotes a transpose field which can be
obtained from E(p) by changing the sign of E,(p). In what
follows, we will assume for simplicity that the wire is
perfectly conducting, though this is not essential to the
technique. To handle this case, we let 6(p)—o0 and E(p)—
0 in S, in such a way that o(p)E(p) passes over into a
surface current distribution J—s(ﬁ) concentrated on C,. The
resulting variational expression is

—y — A2 _
T, =2 T(—
ALE EdS 277,[SE ()
¢ [grad div — Yel]f E-(F_)’)KodS’dS
N S
277'(.06 N2 f ET(p) grad div—, ]ﬁsz(ﬁ,)Kodl 'ds

- JT rad div— 21 | E(5)KydS'dl
szz¢ @) [s 1 E@)k,

i 1 1= . 2 =, ,
> (wesz)z gsc st ()] [grad div—vy, ]¢CWJS(P VKodl'dl

@
where A=(1/N?~1) and the argument of the Bessel
function has been omitted for brevity.

Since the wire is_assumed to be thin, proximity effects
are neglected and J, consists only of a longitudinal com-
ponent J,. But conservation of charge and boundary
conditions on E imply that
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iwe i

% gl K% nEr - g
"slew" T n c T nkE c. J |C (3)
and thus (2) reduces to
— A =
T, _8 T(=
AfSE EdS ZWLE ®)
[ grad div—+2] f E(p')K,dS'dS
-3 N2 f ET(p) grang E(@)]Kodl'ds
+3 Nzgﬁ [7E@®)] dlva(I)’)K ds’dl
! 1 u2 = = = I (= ’
+§_W—W¢%w[n.E(p)]£w[n E(p)]Kodl dl.
4

As a trial function suitable for use when the frequency
is sufficiently low, it seems appropriate to use the fields
which would be present if the walls of the tunnel were
perfectly conducting, i.e., the TEM fields E,, where

Ey=-V,®, Q| =V

®[=0 &)

and “r” denotes the transverse part of an operator, ob-
tained by setting 9/3z=0. If E, is inserted into (4) as the
trial field, some simplification occurs because E, has no
-component'

Af. Eéds— = f Eo(p)- [grad, div,~ 2] [ Eo(@)KodS'dS

-5 N2 f E,(p)-grad, gﬁ - Ey(p') | Kodl'dS

2aN2 ¢C [ﬁ'E_o(l—’)] div, LE_O(E')KOdS’dl
2 ——

(6)

Moreover, by virtue of the special form (5) of E‘O, the
individual terms of (5) can be reworked into more fariliar
quantities. These manipulations are carried out in Appen-
dix A.

From (6), (Al), (A8)-(Al1l), we obtain an equation for
determining I in the thin-wire approximation:

—1 C u2 ua [, S, )
27 (fo)NzI‘z[ln 3 |- o

—A=

+ EA— WIN*Q—— qu (7

where y=0.577--- is Euler’s constant, C is the capaci-
tance per unit length the wire would exhibit if the tunnel
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walls were perfectly conducting, and

€
P= E% fs ®%S (8)
0=— J 2@ [ 0@)Kyds'as )
R= C‘;Z §6C w[ﬁ-E_o(ﬁ)] fs O(5)KodS'dl.  (10)

Here V is the (arbitrary) potential difference associated
with the trial field (5), and clearly drops out of (8)-(10).

As w—0, it can be seen that N2=0(1/w), y2=0(w),
A—s—1, and with a certain amount of hindsight, I'=0(w)',
so that u?=0(w). Since (8)-(10) are 0(w°) as w—0, it can
be seen that, for sufficiently low frequencies, (7) will
reduce to

1 (C\ ua

S O LRt
a result which involves the tunnel geometry only through
the capacitance C, which is tabulated for many different
cross-sectional shapes (see e.g., [7]). Since C is generally
only weakly dependent on the dimensions of the tunnel, it
can be seen that the low-frequency behavior of I will only
weakly depend on these dimensions as well.

As a check on all of this, we can compare with a case
for which a closed-form eigenvalue equation for I is
available, namely a wire centered in a circular tunnel of
radius b. Now, the exact equation is mathematically the
same as that for the Goubau line [8], and the low-
frequency limit is found by taking small argument forms
for the Bessel functions involved (see [8]) and results in

b u? ua
an(2)= 5[ (12)
which agrees with (11) since for this case, C/¢;=
27 /In(b/ a).

A further comparison can be made with the quasi-static
limit for the offset wire in a circular tunnel obtained by
Wait [3]. Calling the radius of the tunnel b, once again,
and denoting v =( — w’uge, — I?)'/2, Wait’s approximations
up to and including eq. (13) of [3] can be summarized in
our notation as

+y]

lob|1  |[N?»1
and hence, uc~vy,. Since our assumptions correspond to
|v.b|< 1, we must take the small argument forms of the
modified Bessel functions in eq. (13) of [3], and insert this
value into eq. (7) of the same reference. The result is

r=zy (13)

where
- AT Y4 ) 14
VA o= (1n 5 +v)+Z, (14)

'For present purposes, O(w) will be understood to include behavior
such as w In w, w(ln «)?, etc.
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ab 7!

Y =2miwe,| In—— 15

IO
where p, is the radial distance of the wire from the center
of the tunnel, and Z, is the axial impedance of the wire.
Putting Z, =0 in (14), making the previously indicated
approximations in (11), and using the capacitance

b2___ 291

< =27r[1n fo ]
€ ab
for the offset wire, we find that (13) and (11) give the
same value for T

Equation (11) can actually be cast in the suggestive
form of (13) if we put

iopy W2 ( ua
=7 2 s (n3+7) (16)
Y=iwC an

in which case the real and imaginary parts of (16) can be
related to the series resistance and inductance of the line,
once the value of I' is known. Equations (16) and (17)
have the interesting interpretation that the low-frequency
behavior of a wire in the tunnel is that of a transmission
line whose shunt admittance is that which the wire would
have if the tunnel walls were perfectly conducting (and
thus is independent of the electric parameters of the rock)
while the series impedance is that of the wire embedded in
the rock with no tunnel surrounding it (and thus is inde-
pendent of the shape of the tunnel)—see, e.g., [10].

III.

In order to compare results from this approximate
analysis to exact results (which are only available for
circular and elliptical cross sections), we need an expres-
sion for the distributed capacitance for these geometries.
For the elliptical geometry shown in Fig. 2 (which in-
cludes the circular geometry as a special case) whose
major and minor semi-axes are given by 4 =(d/2) cosh p,
and B =(d/2) sinh p,, respectively, and in which the wire
is located at (g, ¢p) in elliptic coordinates (x + iy =(d/2)
cosh (u+i¢)), this capacitance is given by Morse and
Feshbach [9] as
2e, d

oo
=In-2Z +p,—
C N%a T 2n§1

NUMERICAL RESULTS

e~ ™

n

cosh? nj, cos? ng,  sinh? nyy sin® ne,

(18)

cosh ap, sinh ny,

It is easily verified that (18) reduces to the expressions
given in the previous section for the circular limit ( u,— o0,
d—0, d exp (p;)—4b).

Results computed from (11) are compared with exact
computations based upon the analysis of Wait and Hill [1]
for a circular tunnel in Fig. 3. Here, the tunnel has radius
b=2 m and contains a perfectly conducting thin wire with
radius a=1 cm. The tunnel walls are characterized by
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Fig. 2. Elliptical tunnel geometry.
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Fig. 3. Comparison of exact (Wait and Hill) and approximate (from
(11)) solutions for attenuation rate and phase versus frequency, for a
circular tunnel of radius b=2 m, with wire of radius a=1 cm, located
at a radius p, from center of tunnel; €= 10 €, p= gy, 6=0.01 mhos/m.
po=0: spo=1m: ———.

e=10¢;, u=py, and 0=0.01 mhos/m. The wire is posi-
tioned at a distance p, from the center of the tunnel. The
solid lines correspond to a concentrically located wire,
while the dashed lines refer to a wire offset p,=1 m from
the center of the tunnel. It can be seen that good agree-
ment is obtained for typical tunnel parameters at
frequencies of 100 kHz or below, and that results are
adequate (within a factor of 2 for the attenuation) up to
about 1 MHz. The phase constant is predicted accurately
up to much higher frequencies. Fig. 4 compares results for
the elliptic cross section using the present variational
approach ((11)—solid lines), and those obtained using the
two-dimensional quasi-static approximation in [4] (broken
lines). Here, (AB)/?=2 m, B/A=0.5, and the wire is
located on the major axis 0.4 m from the tunnel wall.
Other parameters are the same as in Fig. 3. The two give
indistinguishable values for attenuation below about 1
MHz, and thus we find similar agreement with exact
results as in the circular case, because the quasi-static
limit was found to give good results in this low-frequency
range. .

Fig. 5 demonstrates the improvement in these computa-
tions for a concentric circular tunnel obtained by keeping
one higher degree of approximation in (7); that is, still
neglecting Q, but retaining P and evaluating R approxi-
mately using the small argument form of K, Relevant
parameters are the same as those for Fig. 3 with p,=0.
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Fig. 4. Attenuation rate and phase versus frequency for an elliptical
tunnel with (4B)'/2=2 m, B/A=0.5, with wire of radius a=1 c¢m
located on major axis 0.4 m from tunnel wall; e=10 ¢, p= g, 6=0.01
mhos/m. Variational solution (from (11)): . Two-dimensional
quasi-static solution (Seidel and Wait): ———.
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Fig. 5. Attenuation rate and phase versus frequency for a circular
tunnel of radius b=2 m, with wire of radius a=1 cm located at center
of tunnel (py=0); e=10 €, p=pg 0=0.01 mhos/m. Zeroth-order
variational (from (11)): ———. First-order variational (from (7),
including P and R): -------- . Exact (Wait and Hill):

These calculations are elementary for the concentric circu-
lar case (pp=0) and are omitted here. Here the exact
solution is given by the solid lines, the zeroth-order varia-
tional solution from (11) by the broken lines, and the
higher order solution by the dashed lines. The improve-
ment is quite dramatic, especially in the attenuation, up to
a few megahertz, but deteriorates rapidly thereafter. In
view of the other idealizations involved in this problem
(assumptions of an infinite homogeneous rock wail, no
longitudinal irregularities, etc.) the effort necessary to
compute P, Q, and R in more general situations does not
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seem justified in terms of the increased accuracy they
provide.

APPENDIX A

In this Appendix, the terms of (6) are manipulated into
convenient forms for use in a low-frequency approxima-
tion.

First, consider the left-hand side:

fs EMS= fs V,®-V,8dS

- f v, [®Y,8]dS - f OV2PdS

— V¢

where C is the capacitance per unit length of the wire

within a tunnel of identical cross section but with per-

fectly conducting walls. In deriving (Al), use is made of

the divergence theorem and the fact that V2@=0 in S.
Next, we have

[ Eop)[erad, div, 2] [ Eo(p)KydS'dS
S S

v cpdl— = p2 (A1)

= f Ey(p) [ V?— >~ T+cur, curl, ] f E(p)K,dS'dS
S S

- _ 2o 12 Ty (5 (= '

=_27 fs E24S-T fs Ey(p) fs Ey(p)K,dS'dS

+ f E-O(Z))-curlt curl, f E_O(ﬁ’)KOdS’dS (A2)
S s

since (VZ—u*)K,=—278(p—p’). The first term is (Al);
for the third term we have

f E,(p)-curl, curl, f Ey(p)K,dS'dS
S N
= — [ V.9(p)-curl, curl, [ Eo(p)KodS " dS
S S
= f v, {cI)(ﬁ)curl, curl, f EO(E’)KOdS’} ds
S S
= Vgs 7 -curl, curl, f E\(p)KydS'dl
C, s

=V f div, curl, curl, f Ey(p')KodS'di=0. (A3)
Sy S

The remaining integral in (A2) can be transformed by
similar manipulations:

fs E_o(ﬁ)' j; EO(F—”)KodS 'dS
=~ fs v,9(p)- fs Ey(p)KodS'dS
--/. V,-[<I>(r>) . Eo(ﬁf)KOdS'}ds

+ fs ()Y, fs E (p)K,dS'dS.  (Ad)
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Consider the first integral:
- f v, [cp(a) f Eo(a')Kods'}ds
S S

=VQ n | Efp)KydS'dl
¢Cw fs O(P) 0

=V fs v, fs E\(5)KdS'dS

= [ 9G)V, [ EF)Kods"ds
Sw S

defining ®(@)="V in S, since Eo=0 there. Thus (A4)
becomes

J Eoy [ B Keds s = [ @@V [ Eo(@)

-K,dS'dS

(A5)

and since

Vi [ Eop)KedS'= [ Vi®() ViKodS’

= [ V- [2F)ViK, |dS'~ [ )V KodsS’
S S

=- (p)V’KodS’
S+,
=200(p) — 1 f B(p') KydS'. (A6)
S+S,
We obtain finally
[ Eop) [ Eo(p)Kods"dS
S S

=27 oMHs—-u2[ o K,dS'dS
I Y

=27 [ @S —u? [ ®(p) [ ®(5')K,dS'dS A7
" 2@ [ 2@)K, (A7)

upon neglecting the integrals over the wire cross section
owing to our thin-wire assumption. Thus (A2) becomes

[ Ey(p)- [ grad, div, — 2] f E(p')K,dS'dS
s s

= _277-_C_ Vio
€

: f (5) [ @(5') K,dS'dS.
S S
Now, let us consider

J Eooygrad, . (7B | Kod'ds

24T? f ®%S + uT?
S

(A8)

=/, Eo(ﬁ)-gﬁcw[ﬁ'-fo(a')]v,Kodl'ds

¢ [7E

96 7 Ey(p') ] div, f E,(p)K,dSdl’ (A9)
G,

w

@] f Ey(p)- V,K,dSdl’
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which is precisely in the form of the third term on the
right side of (6). By virtue of (A6), we may evaluate this
term as

gb‘c [7Eo3)]V f E(p')KodS'"dl

= 277ngcw[ 7 E(p) |di— ngSCw[ 7Ey(p) ]
: fs ®(5') KodS' di - uZVgﬁc [ 7 Eo(p) ] fs Kods’

9 = (= - '
=2 y2- u2¢cw[n-Eo(p)} fs ®(p')K,dS'dl (A10)
the thin-wire assumption having been invoked once more.

The final term of (6) can be evaluated within the
thin-wire constraint by using the fact that the surface
charge (i.e., - Ey) is nearly uniform over the boundary C,,
of the wire, and can be reckoned constant. We then find,
for a wire of radius a, that

QSC [ EO(P)]F)S [ Eq(p) | Kodl'dl

g_{_C_K} (2 4y} (an)

€

where y=0.577-- - is Euler’s constant.

APPENDIX B

In this Appendix, a derivation of (1) is presented essen-
tially as given in [5]. Consider a volume V of electrical
parameters u(7), €(7), and o(F) embedded in an infinite,
homogeneous region with constant parameters g, €,, and
o,. Source-free field solutions (e.g., fields of guided
modes) can be considered to arise from the polarization
currents J, and J,, radiating in the absence of the body V:

J_e=iw(€—€l)E ~I-;rz=i""(l"_l"1)l7 (B1)
where é=¢—io /w and é =€, — io,/w. Even though E and
H are as yet unknown, the fields can be derived from

Hertz vectors H and H according to
E =(grad div+ k?)TI, — iwp, curl I0,, (B2)
H=(grad div+k})II,, + iwé, curl I, (B3)

where
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—ik1|r—r'[
R - 1
.= iwé; 4 jr— Idr (B4)
_ 1 _ e—ik,|r~r‘|
= Fy———dr'. 135
1, iwiy fVJ'”(r) da|r—r| ar (B5)

We have defined ki =w?u,é; and Im (k,)<O0 for ¢,>0. If
V, u, €, and o are translationally invariant in the z-direc-
tion (i.e, ¥ is some cylinder with constant cross-section
S) and mode fields of the form E= E(p)e '* and H=
H(p)e ™% are assumed, with 5=(x,y), then the z’ integra-
tions in (B4) and (B5) can be done in closed form pro-
vided |Re I‘|< Im k,|:

ﬁe= 27 f( eé(lpﬁ’)

)E—(p')Ko[“!!—)“.ﬁll]dF (B6)

—__e

™ 2 f(“fﬁ) )ﬁ(ﬁ’)Ko[ulb—ﬁ’l}dﬁ’. (B7)

We have put u=(— k?—T1?%)/2 and Re (u)>0. Here K, is
the modified Bessel function of the second kind. Upon
putting u(p)=p,, II,, vanishes and the integral (1) follows
at once from (B2) by taking the observation point p inside
S.
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